From b5aa889f7fced8ba2cc1698ae9696d7bd0ca8ab5 Mon Sep 17 00:00:00 2001 From: garhve Date: Tue, 20 Dec 2022 11:07:35 +0800 Subject: remove compiled binary --- .../target/doc/src/rand/seq/index.rs.html | 1359 ---------- .../target/doc/src/rand/seq/mod.rs.html | 2715 -------------------- 2 files changed, 4074 deletions(-) delete mode 100644 rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/index.rs.html delete mode 100644 rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/mod.rs.html (limited to 'rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq') diff --git a/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/index.rs.html b/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/index.rs.html deleted file mode 100644 index 9f59f7f..0000000 --- a/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/index.rs.html +++ /dev/null @@ -1,1359 +0,0 @@ -index.rs - source
1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44
-45
-46
-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
-77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95
-96
-97
-98
-99
-100
-101
-102
-103
-104
-105
-106
-107
-108
-109
-110
-111
-112
-113
-114
-115
-116
-117
-118
-119
-120
-121
-122
-123
-124
-125
-126
-127
-128
-129
-130
-131
-132
-133
-134
-135
-136
-137
-138
-139
-140
-141
-142
-143
-144
-145
-146
-147
-148
-149
-150
-151
-152
-153
-154
-155
-156
-157
-158
-159
-160
-161
-162
-163
-164
-165
-166
-167
-168
-169
-170
-171
-172
-173
-174
-175
-176
-177
-178
-179
-180
-181
-182
-183
-184
-185
-186
-187
-188
-189
-190
-191
-192
-193
-194
-195
-196
-197
-198
-199
-200
-201
-202
-203
-204
-205
-206
-207
-208
-209
-210
-211
-212
-213
-214
-215
-216
-217
-218
-219
-220
-221
-222
-223
-224
-225
-226
-227
-228
-229
-230
-231
-232
-233
-234
-235
-236
-237
-238
-239
-240
-241
-242
-243
-244
-245
-246
-247
-248
-249
-250
-251
-252
-253
-254
-255
-256
-257
-258
-259
-260
-261
-262
-263
-264
-265
-266
-267
-268
-269
-270
-271
-272
-273
-274
-275
-276
-277
-278
-279
-280
-281
-282
-283
-284
-285
-286
-287
-288
-289
-290
-291
-292
-293
-294
-295
-296
-297
-298
-299
-300
-301
-302
-303
-304
-305
-306
-307
-308
-309
-310
-311
-312
-313
-314
-315
-316
-317
-318
-319
-320
-321
-322
-323
-324
-325
-326
-327
-328
-329
-330
-331
-332
-333
-334
-335
-336
-337
-338
-339
-340
-341
-342
-343
-344
-345
-346
-347
-348
-349
-350
-351
-352
-353
-354
-355
-356
-357
-358
-359
-360
-361
-362
-363
-364
-365
-366
-367
-368
-369
-370
-371
-372
-373
-374
-375
-376
-377
-378
-379
-380
-381
-382
-383
-384
-385
-386
-387
-388
-389
-390
-391
-392
-393
-394
-395
-396
-397
-398
-399
-400
-401
-402
-403
-404
-405
-406
-407
-408
-409
-410
-411
-412
-413
-414
-415
-416
-417
-418
-419
-420
-421
-422
-423
-424
-425
-426
-427
-428
-429
-430
-431
-432
-433
-434
-435
-436
-437
-438
-439
-440
-441
-442
-443
-444
-445
-446
-447
-448
-449
-450
-451
-452
-453
-454
-455
-456
-457
-458
-459
-460
-461
-462
-463
-464
-465
-466
-467
-468
-469
-470
-471
-472
-473
-474
-475
-476
-477
-478
-479
-480
-481
-482
-483
-484
-485
-486
-487
-488
-489
-490
-491
-492
-493
-494
-495
-496
-497
-498
-499
-500
-501
-502
-503
-504
-505
-506
-507
-508
-509
-510
-511
-512
-513
-514
-515
-516
-517
-518
-519
-520
-521
-522
-523
-524
-525
-526
-527
-528
-529
-530
-531
-532
-533
-534
-535
-536
-537
-538
-539
-540
-541
-542
-543
-544
-545
-546
-547
-548
-549
-550
-551
-552
-553
-554
-555
-556
-557
-558
-559
-560
-561
-562
-563
-564
-565
-566
-567
-568
-569
-570
-571
-572
-573
-574
-575
-576
-577
-578
-579
-580
-581
-582
-583
-584
-585
-586
-587
-588
-589
-590
-591
-592
-593
-594
-595
-596
-597
-598
-599
-600
-601
-602
-603
-604
-605
-606
-607
-608
-609
-610
-611
-612
-613
-614
-615
-616
-617
-618
-619
-620
-621
-622
-623
-624
-625
-626
-627
-628
-629
-630
-631
-632
-633
-634
-635
-636
-637
-638
-639
-640
-641
-642
-643
-644
-645
-646
-647
-648
-649
-650
-651
-652
-653
-654
-655
-656
-657
-658
-659
-660
-661
-662
-663
-664
-665
-666
-667
-668
-669
-670
-671
-672
-673
-674
-675
-676
-677
-678
-
// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Low-level API for sampling indices
-
-#[cfg(feature = "alloc")] use core::slice;
-
-#[cfg(feature = "alloc")] use alloc::vec::{self, Vec};
-// BTreeMap is not as fast in tests, but better than nothing.
-#[cfg(all(feature = "alloc", not(feature = "std")))]
-use alloc::collections::BTreeSet;
-#[cfg(feature = "std")] use std::collections::HashSet;
-
-#[cfg(feature = "std")]
-use crate::distributions::WeightedError;
-
-#[cfg(feature = "alloc")]
-use crate::{Rng, distributions::{uniform::SampleUniform, Distribution, Uniform}};
-
-#[cfg(feature = "serde1")]
-use serde::{Serialize, Deserialize};
-
-/// A vector of indices.
-///
-/// Multiple internal representations are possible.
-#[derive(Clone, Debug)]
-#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
-pub enum IndexVec {
-    #[doc(hidden)]
-    U32(Vec<u32>),
-    #[doc(hidden)]
-    USize(Vec<usize>),
-}
-
-impl IndexVec {
-    /// Returns the number of indices
-    #[inline]
-    pub fn len(&self) -> usize {
-        match *self {
-            IndexVec::U32(ref v) => v.len(),
-            IndexVec::USize(ref v) => v.len(),
-        }
-    }
-
-    /// Returns `true` if the length is 0.
-    #[inline]
-    pub fn is_empty(&self) -> bool {
-        match *self {
-            IndexVec::U32(ref v) => v.is_empty(),
-            IndexVec::USize(ref v) => v.is_empty(),
-        }
-    }
-
-    /// Return the value at the given `index`.
-    ///
-    /// (Note: we cannot implement [`std::ops::Index`] because of lifetime
-    /// restrictions.)
-    #[inline]
-    pub fn index(&self, index: usize) -> usize {
-        match *self {
-            IndexVec::U32(ref v) => v[index] as usize,
-            IndexVec::USize(ref v) => v[index],
-        }
-    }
-
-    /// Return result as a `Vec<usize>`. Conversion may or may not be trivial.
-    #[inline]
-    pub fn into_vec(self) -> Vec<usize> {
-        match self {
-            IndexVec::U32(v) => v.into_iter().map(|i| i as usize).collect(),
-            IndexVec::USize(v) => v,
-        }
-    }
-
-    /// Iterate over the indices as a sequence of `usize` values
-    #[inline]
-    pub fn iter(&self) -> IndexVecIter<'_> {
-        match *self {
-            IndexVec::U32(ref v) => IndexVecIter::U32(v.iter()),
-            IndexVec::USize(ref v) => IndexVecIter::USize(v.iter()),
-        }
-    }
-}
-
-impl IntoIterator for IndexVec {
-    type Item = usize;
-    type IntoIter = IndexVecIntoIter;
-
-    /// Convert into an iterator over the indices as a sequence of `usize` values
-    #[inline]
-    fn into_iter(self) -> IndexVecIntoIter {
-        match self {
-            IndexVec::U32(v) => IndexVecIntoIter::U32(v.into_iter()),
-            IndexVec::USize(v) => IndexVecIntoIter::USize(v.into_iter()),
-        }
-    }
-}
-
-impl PartialEq for IndexVec {
-    fn eq(&self, other: &IndexVec) -> bool {
-        use self::IndexVec::*;
-        match (self, other) {
-            (&U32(ref v1), &U32(ref v2)) => v1 == v2,
-            (&USize(ref v1), &USize(ref v2)) => v1 == v2,
-            (&U32(ref v1), &USize(ref v2)) => {
-                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x as usize == *y))
-            }
-            (&USize(ref v1), &U32(ref v2)) => {
-                (v1.len() == v2.len()) && (v1.iter().zip(v2.iter()).all(|(x, y)| *x == *y as usize))
-            }
-        }
-    }
-}
-
-impl From<Vec<u32>> for IndexVec {
-    #[inline]
-    fn from(v: Vec<u32>) -> Self {
-        IndexVec::U32(v)
-    }
-}
-
-impl From<Vec<usize>> for IndexVec {
-    #[inline]
-    fn from(v: Vec<usize>) -> Self {
-        IndexVec::USize(v)
-    }
-}
-
-/// Return type of `IndexVec::iter`.
-#[derive(Debug)]
-pub enum IndexVecIter<'a> {
-    #[doc(hidden)]
-    U32(slice::Iter<'a, u32>),
-    #[doc(hidden)]
-    USize(slice::Iter<'a, usize>),
-}
-
-impl<'a> Iterator for IndexVecIter<'a> {
-    type Item = usize;
-
-    #[inline]
-    fn next(&mut self) -> Option<usize> {
-        use self::IndexVecIter::*;
-        match *self {
-            U32(ref mut iter) => iter.next().map(|i| *i as usize),
-            USize(ref mut iter) => iter.next().cloned(),
-        }
-    }
-
-    #[inline]
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        match *self {
-            IndexVecIter::U32(ref v) => v.size_hint(),
-            IndexVecIter::USize(ref v) => v.size_hint(),
-        }
-    }
-}
-
-impl<'a> ExactSizeIterator for IndexVecIter<'a> {}
-
-/// Return type of `IndexVec::into_iter`.
-#[derive(Clone, Debug)]
-pub enum IndexVecIntoIter {
-    #[doc(hidden)]
-    U32(vec::IntoIter<u32>),
-    #[doc(hidden)]
-    USize(vec::IntoIter<usize>),
-}
-
-impl Iterator for IndexVecIntoIter {
-    type Item = usize;
-
-    #[inline]
-    fn next(&mut self) -> Option<Self::Item> {
-        use self::IndexVecIntoIter::*;
-        match *self {
-            U32(ref mut v) => v.next().map(|i| i as usize),
-            USize(ref mut v) => v.next(),
-        }
-    }
-
-    #[inline]
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        use self::IndexVecIntoIter::*;
-        match *self {
-            U32(ref v) => v.size_hint(),
-            USize(ref v) => v.size_hint(),
-        }
-    }
-}
-
-impl ExactSizeIterator for IndexVecIntoIter {}
-
-
-/// Randomly sample exactly `amount` distinct indices from `0..length`, and
-/// return them in random order (fully shuffled).
-///
-/// This method is used internally by the slice sampling methods, but it can
-/// sometimes be useful to have the indices themselves so this is provided as
-/// an alternative.
-///
-/// The implementation used is not specified; we automatically select the
-/// fastest available algorithm for the `length` and `amount` parameters
-/// (based on detailed profiling on an Intel Haswell CPU). Roughly speaking,
-/// complexity is `O(amount)`, except that when `amount` is small, performance
-/// is closer to `O(amount^2)`, and when `length` is close to `amount` then
-/// `O(length)`.
-///
-/// Note that performance is significantly better over `u32` indices than over
-/// `u64` indices. Because of this we hide the underlying type behind an
-/// abstraction, `IndexVec`.
-///
-/// If an allocation-free `no_std` function is required, it is suggested
-/// to adapt the internal `sample_floyd` implementation.
-///
-/// Panics if `amount > length`.
-pub fn sample<R>(rng: &mut R, length: usize, amount: usize) -> IndexVec
-where R: Rng + ?Sized {
-    if amount > length {
-        panic!("`amount` of samples must be less than or equal to `length`");
-    }
-    if length > (::core::u32::MAX as usize) {
-        // We never want to use inplace here, but could use floyd's alg
-        // Lazy version: always use the cache alg.
-        return sample_rejection(rng, length, amount);
-    }
-    let amount = amount as u32;
-    let length = length as u32;
-
-    // Choice of algorithm here depends on both length and amount. See:
-    // https://github.com/rust-random/rand/pull/479
-    // We do some calculations with f32. Accuracy is not very important.
-
-    if amount < 163 {
-        const C: [[f32; 2]; 2] = [[1.6, 8.0 / 45.0], [10.0, 70.0 / 9.0]];
-        let j = if length < 500_000 { 0 } else { 1 };
-        let amount_fp = amount as f32;
-        let m4 = C[0][j] * amount_fp;
-        // Short-cut: when amount < 12, floyd's is always faster
-        if amount > 11 && (length as f32) < (C[1][j] + m4) * amount_fp {
-            sample_inplace(rng, length, amount)
-        } else {
-            sample_floyd(rng, length, amount)
-        }
-    } else {
-        const C: [f32; 2] = [270.0, 330.0 / 9.0];
-        let j = if length < 500_000 { 0 } else { 1 };
-        if (length as f32) < C[j] * (amount as f32) {
-            sample_inplace(rng, length, amount)
-        } else {
-            sample_rejection(rng, length, amount)
-        }
-    }
-}
-
-/// Randomly sample exactly `amount` distinct indices from `0..length`, and
-/// return them in an arbitrary order (there is no guarantee of shuffling or
-/// ordering). The weights are to be provided by the input function `weights`,
-/// which will be called once for each index.
-///
-/// This method is used internally by the slice sampling methods, but it can
-/// sometimes be useful to have the indices themselves so this is provided as
-/// an alternative.
-///
-/// This implementation uses `O(length + amount)` space and `O(length)` time
-/// if the "nightly" feature is enabled, or `O(length)` space and
-/// `O(length + amount * log length)` time otherwise.
-///
-/// Panics if `amount > length`.
-#[cfg(feature = "std")]
-#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
-pub fn sample_weighted<R, F, X>(
-    rng: &mut R, length: usize, weight: F, amount: usize,
-) -> Result<IndexVec, WeightedError>
-where
-    R: Rng + ?Sized,
-    F: Fn(usize) -> X,
-    X: Into<f64>,
-{
-    if length > (core::u32::MAX as usize) {
-        sample_efraimidis_spirakis(rng, length, weight, amount)
-    } else {
-        assert!(amount <= core::u32::MAX as usize);
-        let amount = amount as u32;
-        let length = length as u32;
-        sample_efraimidis_spirakis(rng, length, weight, amount)
-    }
-}
-
-
-/// Randomly sample exactly `amount` distinct indices from `0..length`, and
-/// return them in an arbitrary order (there is no guarantee of shuffling or
-/// ordering). The weights are to be provided by the input function `weights`,
-/// which will be called once for each index.
-///
-/// This implementation uses the algorithm described by Efraimidis and Spirakis
-/// in this paper: https://doi.org/10.1016/j.ipl.2005.11.003
-/// It uses `O(length + amount)` space and `O(length)` time if the
-/// "nightly" feature is enabled, or `O(length)` space and `O(length
-/// + amount * log length)` time otherwise.
-///
-/// Panics if `amount > length`.
-#[cfg(feature = "std")]
-fn sample_efraimidis_spirakis<R, F, X, N>(
-    rng: &mut R, length: N, weight: F, amount: N,
-) -> Result<IndexVec, WeightedError>
-where
-    R: Rng + ?Sized,
-    F: Fn(usize) -> X,
-    X: Into<f64>,
-    N: UInt,
-    IndexVec: From<Vec<N>>,
-{
-    if amount == N::zero() {
-        return Ok(IndexVec::U32(Vec::new()));
-    }
-
-    if amount > length {
-        panic!("`amount` of samples must be less than or equal to `length`");
-    }
-
-    struct Element<N> {
-        index: N,
-        key: f64,
-    }
-    impl<N> PartialOrd for Element<N> {
-        fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
-            self.key.partial_cmp(&other.key)
-        }
-    }
-    impl<N> Ord for Element<N> {
-        fn cmp(&self, other: &Self) -> core::cmp::Ordering {
-             // partial_cmp will always produce a value,
-             // because we check that the weights are not nan
-            self.partial_cmp(other).unwrap()
-        }
-    }
-    impl<N> PartialEq for Element<N> {
-        fn eq(&self, other: &Self) -> bool {
-            self.key == other.key
-        }
-    }
-    impl<N> Eq for Element<N> {}
-
-    #[cfg(feature = "nightly")]
-    {
-        let mut candidates = Vec::with_capacity(length.as_usize());
-        let mut index = N::zero();
-        while index < length {
-            let weight = weight(index.as_usize()).into();
-            if !(weight >= 0.) {
-                return Err(WeightedError::InvalidWeight);
-            }
-
-            let key = rng.gen::<f64>().powf(1.0 / weight);
-            candidates.push(Element { index, key });
-
-            index += N::one();
-        }
-
-        // Partially sort the array to find the `amount` elements with the greatest
-        // keys. Do this by using `select_nth_unstable` to put the elements with
-        // the *smallest* keys at the beginning of the list in `O(n)` time, which
-        // provides equivalent information about the elements with the *greatest* keys.
-        let (_, mid, greater)
-            = candidates.select_nth_unstable(length.as_usize() - amount.as_usize());
-
-        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
-        result.push(mid.index);
-        for element in greater {
-            result.push(element.index);
-        }
-        Ok(IndexVec::from(result))
-    }
-
-    #[cfg(not(feature = "nightly"))]
-    {
-        use alloc::collections::BinaryHeap;
-
-        // Partially sort the array such that the `amount` elements with the largest
-        // keys are first using a binary max heap.
-        let mut candidates = BinaryHeap::with_capacity(length.as_usize());
-        let mut index = N::zero();
-        while index < length {
-            let weight = weight(index.as_usize()).into();
-            if !(weight >= 0.) {
-                return Err(WeightedError::InvalidWeight);
-            }
-
-            let key = rng.gen::<f64>().powf(1.0 / weight);
-            candidates.push(Element { index, key });
-
-            index += N::one();
-        }
-
-        let mut result: Vec<N> = Vec::with_capacity(amount.as_usize());
-        while result.len() < amount.as_usize() {
-            result.push(candidates.pop().unwrap().index);
-        }
-        Ok(IndexVec::from(result))
-    }
-}
-
-/// Randomly sample exactly `amount` indices from `0..length`, using Floyd's
-/// combination algorithm.
-///
-/// The output values are fully shuffled. (Overhead is under 50%.)
-///
-/// This implementation uses `O(amount)` memory and `O(amount^2)` time.
-fn sample_floyd<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
-where R: Rng + ?Sized {
-    // For small amount we use Floyd's fully-shuffled variant. For larger
-    // amounts this is slow due to Vec::insert performance, so we shuffle
-    // afterwards. Benchmarks show little overhead from extra logic.
-    let floyd_shuffle = amount < 50;
-
-    debug_assert!(amount <= length);
-    let mut indices = Vec::with_capacity(amount as usize);
-    for j in length - amount..length {
-        let t = rng.gen_range(0..=j);
-        if floyd_shuffle {
-            if let Some(pos) = indices.iter().position(|&x| x == t) {
-                indices.insert(pos, j);
-                continue;
-            }
-        } else if indices.contains(&t) {
-            indices.push(j);
-            continue;
-        }
-        indices.push(t);
-    }
-    if !floyd_shuffle {
-        // Reimplement SliceRandom::shuffle with smaller indices
-        for i in (1..amount).rev() {
-            // invariant: elements with index > i have been locked in place.
-            indices.swap(i as usize, rng.gen_range(0..=i) as usize);
-        }
-    }
-    IndexVec::from(indices)
-}
-
-/// Randomly sample exactly `amount` indices from `0..length`, using an inplace
-/// partial Fisher-Yates method.
-/// Sample an amount of indices using an inplace partial fisher yates method.
-///
-/// This allocates the entire `length` of indices and randomizes only the first `amount`.
-/// It then truncates to `amount` and returns.
-///
-/// This method is not appropriate for large `length` and potentially uses a lot
-/// of memory; because of this we only implement for `u32` index (which improves
-/// performance in all cases).
-///
-/// Set-up is `O(length)` time and memory and shuffling is `O(amount)` time.
-fn sample_inplace<R>(rng: &mut R, length: u32, amount: u32) -> IndexVec
-where R: Rng + ?Sized {
-    debug_assert!(amount <= length);
-    let mut indices: Vec<u32> = Vec::with_capacity(length as usize);
-    indices.extend(0..length);
-    for i in 0..amount {
-        let j: u32 = rng.gen_range(i..length);
-        indices.swap(i as usize, j as usize);
-    }
-    indices.truncate(amount as usize);
-    debug_assert_eq!(indices.len(), amount as usize);
-    IndexVec::from(indices)
-}
-
-trait UInt: Copy + PartialOrd + Ord + PartialEq + Eq + SampleUniform
-    + core::hash::Hash + core::ops::AddAssign {
-    fn zero() -> Self;
-    fn one() -> Self;
-    fn as_usize(self) -> usize;
-}
-impl UInt for u32 {
-    #[inline]
-    fn zero() -> Self {
-        0
-    }
-
-    #[inline]
-    fn one() -> Self {
-        1
-    }
-
-    #[inline]
-    fn as_usize(self) -> usize {
-        self as usize
-    }
-}
-impl UInt for usize {
-    #[inline]
-    fn zero() -> Self {
-        0
-    }
-
-    #[inline]
-    fn one() -> Self {
-        1
-    }
-
-    #[inline]
-    fn as_usize(self) -> usize {
-        self
-    }
-}
-
-/// Randomly sample exactly `amount` indices from `0..length`, using rejection
-/// sampling.
-///
-/// Since `amount <<< length` there is a low chance of a random sample in
-/// `0..length` being a duplicate. We test for duplicates and resample where
-/// necessary. The algorithm is `O(amount)` time and memory.
-///
-/// This function  is generic over X primarily so that results are value-stable
-/// over 32-bit and 64-bit platforms.
-fn sample_rejection<X: UInt, R>(rng: &mut R, length: X, amount: X) -> IndexVec
-where
-    R: Rng + ?Sized,
-    IndexVec: From<Vec<X>>,
-{
-    debug_assert!(amount < length);
-    #[cfg(feature = "std")]
-    let mut cache = HashSet::with_capacity(amount.as_usize());
-    #[cfg(not(feature = "std"))]
-    let mut cache = BTreeSet::new();
-    let distr = Uniform::new(X::zero(), length);
-    let mut indices = Vec::with_capacity(amount.as_usize());
-    for _ in 0..amount.as_usize() {
-        let mut pos = distr.sample(rng);
-        while !cache.insert(pos) {
-            pos = distr.sample(rng);
-        }
-        indices.push(pos);
-    }
-
-    debug_assert_eq!(indices.len(), amount.as_usize());
-    IndexVec::from(indices)
-}
-
-#[cfg(test)]
-mod test {
-    use super::*;
-
-    #[test]
-    #[cfg(feature = "serde1")]
-    fn test_serialization_index_vec() {
-        let some_index_vec = IndexVec::from(vec![254_usize, 234, 2, 1]);
-        let de_some_index_vec: IndexVec = bincode::deserialize(&bincode::serialize(&some_index_vec).unwrap()).unwrap();
-        match (some_index_vec, de_some_index_vec) {
-            (IndexVec::U32(a), IndexVec::U32(b)) => {
-                assert_eq!(a, b);
-            },
-            (IndexVec::USize(a), IndexVec::USize(b)) => {
-                assert_eq!(a, b);
-            },
-            _ => {panic!("failed to seralize/deserialize `IndexVec`")}
-        }
-    }
-
-    #[cfg(feature = "alloc")] use alloc::vec;
-
-    #[test]
-    fn test_sample_boundaries() {
-        let mut r = crate::test::rng(404);
-
-        assert_eq!(sample_inplace(&mut r, 0, 0).len(), 0);
-        assert_eq!(sample_inplace(&mut r, 1, 0).len(), 0);
-        assert_eq!(sample_inplace(&mut r, 1, 1).into_vec(), vec![0]);
-
-        assert_eq!(sample_rejection(&mut r, 1u32, 0).len(), 0);
-
-        assert_eq!(sample_floyd(&mut r, 0, 0).len(), 0);
-        assert_eq!(sample_floyd(&mut r, 1, 0).len(), 0);
-        assert_eq!(sample_floyd(&mut r, 1, 1).into_vec(), vec![0]);
-
-        // These algorithms should be fast with big numbers. Test average.
-        let sum: usize = sample_rejection(&mut r, 1 << 25, 10u32).into_iter().sum();
-        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
-
-        let sum: usize = sample_floyd(&mut r, 1 << 25, 10).into_iter().sum();
-        assert!(1 << 25 < sum && sum < (1 << 25) * 25);
-    }
-
-    #[test]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_sample_alg() {
-        let seed_rng = crate::test::rng;
-
-        // We can't test which algorithm is used directly, but Floyd's alg
-        // should produce different results from the others. (Also, `inplace`
-        // and `cached` currently use different sizes thus produce different results.)
-
-        // A small length and relatively large amount should use inplace
-        let (length, amount): (usize, usize) = (100, 50);
-        let v1 = sample(&mut seed_rng(420), length, amount);
-        let v2 = sample_inplace(&mut seed_rng(420), length as u32, amount as u32);
-        assert!(v1.iter().all(|e| e < length));
-        assert_eq!(v1, v2);
-
-        // Test Floyd's alg does produce different results
-        let v3 = sample_floyd(&mut seed_rng(420), length as u32, amount as u32);
-        assert!(v1 != v3);
-
-        // A large length and small amount should use Floyd
-        let (length, amount): (usize, usize) = (1 << 20, 50);
-        let v1 = sample(&mut seed_rng(421), length, amount);
-        let v2 = sample_floyd(&mut seed_rng(421), length as u32, amount as u32);
-        assert!(v1.iter().all(|e| e < length));
-        assert_eq!(v1, v2);
-
-        // A large length and larger amount should use cache
-        let (length, amount): (usize, usize) = (1 << 20, 600);
-        let v1 = sample(&mut seed_rng(422), length, amount);
-        let v2 = sample_rejection(&mut seed_rng(422), length as u32, amount as u32);
-        assert!(v1.iter().all(|e| e < length));
-        assert_eq!(v1, v2);
-    }
-
-    #[cfg(feature = "std")]
-    #[test]
-    fn test_sample_weighted() {
-        let seed_rng = crate::test::rng;
-        for &(amount, len) in &[(0, 10), (5, 10), (10, 10)] {
-            let v = sample_weighted(&mut seed_rng(423), len, |i| i as f64, amount).unwrap();
-            match v {
-                IndexVec::U32(mut indices) => {
-                    assert_eq!(indices.len(), amount);
-                    indices.sort_unstable();
-                    indices.dedup();
-                    assert_eq!(indices.len(), amount);
-                    for &i in &indices {
-                        assert!((i as usize) < len);
-                    }
-                },
-                IndexVec::USize(_) => panic!("expected `IndexVec::U32`"),
-            }
-        }
-    }
-
-    #[test]
-    fn value_stability_sample() {
-        let do_test = |length, amount, values: &[u32]| {
-            let mut buf = [0u32; 8];
-            let mut rng = crate::test::rng(410);
-
-            let res = sample(&mut rng, length, amount);
-            let len = res.len().min(buf.len());
-            for (x, y) in res.into_iter().zip(buf.iter_mut()) {
-                *y = x as u32;
-            }
-            assert_eq!(
-                &buf[0..len],
-                values,
-                "failed sampling {}, {}",
-                length,
-                amount
-            );
-        };
-
-        do_test(10, 6, &[8, 0, 3, 5, 9, 6]); // floyd
-        do_test(25, 10, &[18, 15, 14, 9, 0, 13, 5, 24]); // floyd
-        do_test(300, 8, &[30, 283, 150, 1, 73, 13, 285, 35]); // floyd
-        do_test(300, 80, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
-        do_test(300, 180, &[31, 289, 248, 154, 5, 78, 19, 286]); // inplace
-
-        do_test(1_000_000, 8, &[
-            103717, 963485, 826422, 509101, 736394, 807035, 5327, 632573,
-        ]); // floyd
-        do_test(1_000_000, 180, &[
-            103718, 963490, 826426, 509103, 736396, 807036, 5327, 632573,
-        ]); // rejection
-    }
-}
-
-
\ No newline at end of file diff --git a/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/mod.rs.html b/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/mod.rs.html deleted file mode 100644 index 99cd32d..0000000 --- a/rust/theBook/chapter-2-guessing-game/guessing_game/target/doc/src/rand/seq/mod.rs.html +++ /dev/null @@ -1,2715 +0,0 @@ -mod.rs - source
1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
-16
-17
-18
-19
-20
-21
-22
-23
-24
-25
-26
-27
-28
-29
-30
-31
-32
-33
-34
-35
-36
-37
-38
-39
-40
-41
-42
-43
-44
-45
-46
-47
-48
-49
-50
-51
-52
-53
-54
-55
-56
-57
-58
-59
-60
-61
-62
-63
-64
-65
-66
-67
-68
-69
-70
-71
-72
-73
-74
-75
-76
-77
-78
-79
-80
-81
-82
-83
-84
-85
-86
-87
-88
-89
-90
-91
-92
-93
-94
-95
-96
-97
-98
-99
-100
-101
-102
-103
-104
-105
-106
-107
-108
-109
-110
-111
-112
-113
-114
-115
-116
-117
-118
-119
-120
-121
-122
-123
-124
-125
-126
-127
-128
-129
-130
-131
-132
-133
-134
-135
-136
-137
-138
-139
-140
-141
-142
-143
-144
-145
-146
-147
-148
-149
-150
-151
-152
-153
-154
-155
-156
-157
-158
-159
-160
-161
-162
-163
-164
-165
-166
-167
-168
-169
-170
-171
-172
-173
-174
-175
-176
-177
-178
-179
-180
-181
-182
-183
-184
-185
-186
-187
-188
-189
-190
-191
-192
-193
-194
-195
-196
-197
-198
-199
-200
-201
-202
-203
-204
-205
-206
-207
-208
-209
-210
-211
-212
-213
-214
-215
-216
-217
-218
-219
-220
-221
-222
-223
-224
-225
-226
-227
-228
-229
-230
-231
-232
-233
-234
-235
-236
-237
-238
-239
-240
-241
-242
-243
-244
-245
-246
-247
-248
-249
-250
-251
-252
-253
-254
-255
-256
-257
-258
-259
-260
-261
-262
-263
-264
-265
-266
-267
-268
-269
-270
-271
-272
-273
-274
-275
-276
-277
-278
-279
-280
-281
-282
-283
-284
-285
-286
-287
-288
-289
-290
-291
-292
-293
-294
-295
-296
-297
-298
-299
-300
-301
-302
-303
-304
-305
-306
-307
-308
-309
-310
-311
-312
-313
-314
-315
-316
-317
-318
-319
-320
-321
-322
-323
-324
-325
-326
-327
-328
-329
-330
-331
-332
-333
-334
-335
-336
-337
-338
-339
-340
-341
-342
-343
-344
-345
-346
-347
-348
-349
-350
-351
-352
-353
-354
-355
-356
-357
-358
-359
-360
-361
-362
-363
-364
-365
-366
-367
-368
-369
-370
-371
-372
-373
-374
-375
-376
-377
-378
-379
-380
-381
-382
-383
-384
-385
-386
-387
-388
-389
-390
-391
-392
-393
-394
-395
-396
-397
-398
-399
-400
-401
-402
-403
-404
-405
-406
-407
-408
-409
-410
-411
-412
-413
-414
-415
-416
-417
-418
-419
-420
-421
-422
-423
-424
-425
-426
-427
-428
-429
-430
-431
-432
-433
-434
-435
-436
-437
-438
-439
-440
-441
-442
-443
-444
-445
-446
-447
-448
-449
-450
-451
-452
-453
-454
-455
-456
-457
-458
-459
-460
-461
-462
-463
-464
-465
-466
-467
-468
-469
-470
-471
-472
-473
-474
-475
-476
-477
-478
-479
-480
-481
-482
-483
-484
-485
-486
-487
-488
-489
-490
-491
-492
-493
-494
-495
-496
-497
-498
-499
-500
-501
-502
-503
-504
-505
-506
-507
-508
-509
-510
-511
-512
-513
-514
-515
-516
-517
-518
-519
-520
-521
-522
-523
-524
-525
-526
-527
-528
-529
-530
-531
-532
-533
-534
-535
-536
-537
-538
-539
-540
-541
-542
-543
-544
-545
-546
-547
-548
-549
-550
-551
-552
-553
-554
-555
-556
-557
-558
-559
-560
-561
-562
-563
-564
-565
-566
-567
-568
-569
-570
-571
-572
-573
-574
-575
-576
-577
-578
-579
-580
-581
-582
-583
-584
-585
-586
-587
-588
-589
-590
-591
-592
-593
-594
-595
-596
-597
-598
-599
-600
-601
-602
-603
-604
-605
-606
-607
-608
-609
-610
-611
-612
-613
-614
-615
-616
-617
-618
-619
-620
-621
-622
-623
-624
-625
-626
-627
-628
-629
-630
-631
-632
-633
-634
-635
-636
-637
-638
-639
-640
-641
-642
-643
-644
-645
-646
-647
-648
-649
-650
-651
-652
-653
-654
-655
-656
-657
-658
-659
-660
-661
-662
-663
-664
-665
-666
-667
-668
-669
-670
-671
-672
-673
-674
-675
-676
-677
-678
-679
-680
-681
-682
-683
-684
-685
-686
-687
-688
-689
-690
-691
-692
-693
-694
-695
-696
-697
-698
-699
-700
-701
-702
-703
-704
-705
-706
-707
-708
-709
-710
-711
-712
-713
-714
-715
-716
-717
-718
-719
-720
-721
-722
-723
-724
-725
-726
-727
-728
-729
-730
-731
-732
-733
-734
-735
-736
-737
-738
-739
-740
-741
-742
-743
-744
-745
-746
-747
-748
-749
-750
-751
-752
-753
-754
-755
-756
-757
-758
-759
-760
-761
-762
-763
-764
-765
-766
-767
-768
-769
-770
-771
-772
-773
-774
-775
-776
-777
-778
-779
-780
-781
-782
-783
-784
-785
-786
-787
-788
-789
-790
-791
-792
-793
-794
-795
-796
-797
-798
-799
-800
-801
-802
-803
-804
-805
-806
-807
-808
-809
-810
-811
-812
-813
-814
-815
-816
-817
-818
-819
-820
-821
-822
-823
-824
-825
-826
-827
-828
-829
-830
-831
-832
-833
-834
-835
-836
-837
-838
-839
-840
-841
-842
-843
-844
-845
-846
-847
-848
-849
-850
-851
-852
-853
-854
-855
-856
-857
-858
-859
-860
-861
-862
-863
-864
-865
-866
-867
-868
-869
-870
-871
-872
-873
-874
-875
-876
-877
-878
-879
-880
-881
-882
-883
-884
-885
-886
-887
-888
-889
-890
-891
-892
-893
-894
-895
-896
-897
-898
-899
-900
-901
-902
-903
-904
-905
-906
-907
-908
-909
-910
-911
-912
-913
-914
-915
-916
-917
-918
-919
-920
-921
-922
-923
-924
-925
-926
-927
-928
-929
-930
-931
-932
-933
-934
-935
-936
-937
-938
-939
-940
-941
-942
-943
-944
-945
-946
-947
-948
-949
-950
-951
-952
-953
-954
-955
-956
-957
-958
-959
-960
-961
-962
-963
-964
-965
-966
-967
-968
-969
-970
-971
-972
-973
-974
-975
-976
-977
-978
-979
-980
-981
-982
-983
-984
-985
-986
-987
-988
-989
-990
-991
-992
-993
-994
-995
-996
-997
-998
-999
-1000
-1001
-1002
-1003
-1004
-1005
-1006
-1007
-1008
-1009
-1010
-1011
-1012
-1013
-1014
-1015
-1016
-1017
-1018
-1019
-1020
-1021
-1022
-1023
-1024
-1025
-1026
-1027
-1028
-1029
-1030
-1031
-1032
-1033
-1034
-1035
-1036
-1037
-1038
-1039
-1040
-1041
-1042
-1043
-1044
-1045
-1046
-1047
-1048
-1049
-1050
-1051
-1052
-1053
-1054
-1055
-1056
-1057
-1058
-1059
-1060
-1061
-1062
-1063
-1064
-1065
-1066
-1067
-1068
-1069
-1070
-1071
-1072
-1073
-1074
-1075
-1076
-1077
-1078
-1079
-1080
-1081
-1082
-1083
-1084
-1085
-1086
-1087
-1088
-1089
-1090
-1091
-1092
-1093
-1094
-1095
-1096
-1097
-1098
-1099
-1100
-1101
-1102
-1103
-1104
-1105
-1106
-1107
-1108
-1109
-1110
-1111
-1112
-1113
-1114
-1115
-1116
-1117
-1118
-1119
-1120
-1121
-1122
-1123
-1124
-1125
-1126
-1127
-1128
-1129
-1130
-1131
-1132
-1133
-1134
-1135
-1136
-1137
-1138
-1139
-1140
-1141
-1142
-1143
-1144
-1145
-1146
-1147
-1148
-1149
-1150
-1151
-1152
-1153
-1154
-1155
-1156
-1157
-1158
-1159
-1160
-1161
-1162
-1163
-1164
-1165
-1166
-1167
-1168
-1169
-1170
-1171
-1172
-1173
-1174
-1175
-1176
-1177
-1178
-1179
-1180
-1181
-1182
-1183
-1184
-1185
-1186
-1187
-1188
-1189
-1190
-1191
-1192
-1193
-1194
-1195
-1196
-1197
-1198
-1199
-1200
-1201
-1202
-1203
-1204
-1205
-1206
-1207
-1208
-1209
-1210
-1211
-1212
-1213
-1214
-1215
-1216
-1217
-1218
-1219
-1220
-1221
-1222
-1223
-1224
-1225
-1226
-1227
-1228
-1229
-1230
-1231
-1232
-1233
-1234
-1235
-1236
-1237
-1238
-1239
-1240
-1241
-1242
-1243
-1244
-1245
-1246
-1247
-1248
-1249
-1250
-1251
-1252
-1253
-1254
-1255
-1256
-1257
-1258
-1259
-1260
-1261
-1262
-1263
-1264
-1265
-1266
-1267
-1268
-1269
-1270
-1271
-1272
-1273
-1274
-1275
-1276
-1277
-1278
-1279
-1280
-1281
-1282
-1283
-1284
-1285
-1286
-1287
-1288
-1289
-1290
-1291
-1292
-1293
-1294
-1295
-1296
-1297
-1298
-1299
-1300
-1301
-1302
-1303
-1304
-1305
-1306
-1307
-1308
-1309
-1310
-1311
-1312
-1313
-1314
-1315
-1316
-1317
-1318
-1319
-1320
-1321
-1322
-1323
-1324
-1325
-1326
-1327
-1328
-1329
-1330
-1331
-1332
-1333
-1334
-1335
-1336
-1337
-1338
-1339
-1340
-1341
-1342
-1343
-1344
-1345
-1346
-1347
-1348
-1349
-1350
-1351
-1352
-1353
-1354
-1355
-1356
-
// Copyright 2018 Developers of the Rand project.
-//
-// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
-// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
-// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
-// option. This file may not be copied, modified, or distributed
-// except according to those terms.
-
-//! Sequence-related functionality
-//!
-//! This module provides:
-//!
-//! *   [`SliceRandom`] slice sampling and mutation
-//! *   [`IteratorRandom`] iterator sampling
-//! *   [`index::sample`] low-level API to choose multiple indices from
-//!     `0..length`
-//!
-//! Also see:
-//!
-//! *   [`crate::distributions::WeightedIndex`] distribution which provides
-//!     weighted index sampling.
-//!
-//! In order to make results reproducible across 32-64 bit architectures, all
-//! `usize` indices are sampled as a `u32` where possible (also providing a
-//! small performance boost in some cases).
-
-
-#[cfg(feature = "alloc")]
-#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-pub mod index;
-
-#[cfg(feature = "alloc")] use core::ops::Index;
-
-#[cfg(feature = "alloc")] use alloc::vec::Vec;
-
-#[cfg(feature = "alloc")]
-use crate::distributions::uniform::{SampleBorrow, SampleUniform};
-#[cfg(feature = "alloc")] use crate::distributions::WeightedError;
-use crate::Rng;
-
-/// Extension trait on slices, providing random mutation and sampling methods.
-///
-/// This trait is implemented on all `[T]` slice types, providing several
-/// methods for choosing and shuffling elements. You must `use` this trait:
-///
-/// ```
-/// use rand::seq::SliceRandom;
-///
-/// let mut rng = rand::thread_rng();
-/// let mut bytes = "Hello, random!".to_string().into_bytes();
-/// bytes.shuffle(&mut rng);
-/// let str = String::from_utf8(bytes).unwrap();
-/// println!("{}", str);
-/// ```
-/// Example output (non-deterministic):
-/// ```none
-/// l,nmroHado !le
-/// ```
-pub trait SliceRandom {
-    /// The element type.
-    type Item;
-
-    /// Returns a reference to one random element of the slice, or `None` if the
-    /// slice is empty.
-    ///
-    /// For slices, complexity is `O(1)`.
-    ///
-    /// # Example
-    ///
-    /// ```
-    /// use rand::thread_rng;
-    /// use rand::seq::SliceRandom;
-    ///
-    /// let choices = [1, 2, 4, 8, 16, 32];
-    /// let mut rng = thread_rng();
-    /// println!("{:?}", choices.choose(&mut rng));
-    /// assert_eq!(choices[..0].choose(&mut rng), None);
-    /// ```
-    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
-    where R: Rng + ?Sized;
-
-    /// Returns a mutable reference to one random element of the slice, or
-    /// `None` if the slice is empty.
-    ///
-    /// For slices, complexity is `O(1)`.
-    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
-    where R: Rng + ?Sized;
-
-    /// Chooses `amount` elements from the slice at random, without repetition,
-    /// and in random order. The returned iterator is appropriate both for
-    /// collection into a `Vec` and filling an existing buffer (see example).
-    ///
-    /// In case this API is not sufficiently flexible, use [`index::sample`].
-    ///
-    /// For slices, complexity is the same as [`index::sample`].
-    ///
-    /// # Example
-    /// ```
-    /// use rand::seq::SliceRandom;
-    ///
-    /// let mut rng = &mut rand::thread_rng();
-    /// let sample = "Hello, audience!".as_bytes();
-    ///
-    /// // collect the results into a vector:
-    /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
-    ///
-    /// // store in a buffer:
-    /// let mut buf = [0u8; 5];
-    /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
-    ///     *slot = *b;
-    /// }
-    /// ```
-    #[cfg(feature = "alloc")]
-    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
-    where R: Rng + ?Sized;
-
-    /// Similar to [`choose`], but where the likelihood of each outcome may be
-    /// specified.
-    ///
-    /// The specified function `weight` maps each item `x` to a relative
-    /// likelihood `weight(x)`. The probability of each item being selected is
-    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
-    ///
-    /// For slices of length `n`, complexity is `O(n)`.
-    /// See also [`choose_weighted_mut`], [`distributions::weighted`].
-    ///
-    /// # Example
-    ///
-    /// ```
-    /// use rand::prelude::*;
-    ///
-    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
-    /// let mut rng = thread_rng();
-    /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
-    /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
-    /// ```
-    /// [`choose`]: SliceRandom::choose
-    /// [`choose_weighted_mut`]: SliceRandom::choose_weighted_mut
-    /// [`distributions::weighted`]: crate::distributions::weighted
-    #[cfg(feature = "alloc")]
-    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-    fn choose_weighted<R, F, B, X>(
-        &self, rng: &mut R, weight: F,
-    ) -> Result<&Self::Item, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> B,
-        B: SampleBorrow<X>,
-        X: SampleUniform
-            + for<'a> ::core::ops::AddAssign<&'a X>
-            + ::core::cmp::PartialOrd<X>
-            + Clone
-            + Default;
-
-    /// Similar to [`choose_mut`], but where the likelihood of each outcome may
-    /// be specified.
-    ///
-    /// The specified function `weight` maps each item `x` to a relative
-    /// likelihood `weight(x)`. The probability of each item being selected is
-    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
-    ///
-    /// For slices of length `n`, complexity is `O(n)`.
-    /// See also [`choose_weighted`], [`distributions::weighted`].
-    ///
-    /// [`choose_mut`]: SliceRandom::choose_mut
-    /// [`choose_weighted`]: SliceRandom::choose_weighted
-    /// [`distributions::weighted`]: crate::distributions::weighted
-    #[cfg(feature = "alloc")]
-    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-    fn choose_weighted_mut<R, F, B, X>(
-        &mut self, rng: &mut R, weight: F,
-    ) -> Result<&mut Self::Item, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> B,
-        B: SampleBorrow<X>,
-        X: SampleUniform
-            + for<'a> ::core::ops::AddAssign<&'a X>
-            + ::core::cmp::PartialOrd<X>
-            + Clone
-            + Default;
-
-    /// Similar to [`choose_multiple`], but where the likelihood of each element's
-    /// inclusion in the output may be specified. The elements are returned in an
-    /// arbitrary, unspecified order.
-    ///
-    /// The specified function `weight` maps each item `x` to a relative
-    /// likelihood `weight(x)`. The probability of each item being selected is
-    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
-    ///
-    /// If all of the weights are equal, even if they are all zero, each element has
-    /// an equal likelihood of being selected.
-    ///
-    /// The complexity of this method depends on the feature `partition_at_index`.
-    /// If the feature is enabled, then for slices of length `n`, the complexity
-    /// is `O(n)` space and `O(n)` time. Otherwise, the complexity is `O(n)` space and
-    /// `O(n * log amount)` time.
-    ///
-    /// # Example
-    ///
-    /// ```
-    /// use rand::prelude::*;
-    ///
-    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
-    /// let mut rng = thread_rng();
-    /// // First Draw * Second Draw = total odds
-    /// // -----------------------
-    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
-    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
-    /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
-    /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
-    /// ```
-    /// [`choose_multiple`]: SliceRandom::choose_multiple
-    //
-    // Note: this is feature-gated on std due to usage of f64::powf.
-    // If necessary, we may use alloc+libm as an alternative (see PR #1089).
-    #[cfg(feature = "std")]
-    #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
-    fn choose_multiple_weighted<R, F, X>(
-        &self, rng: &mut R, amount: usize, weight: F,
-    ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> X,
-        X: Into<f64>;
-
-    /// Shuffle a mutable slice in place.
-    ///
-    /// For slices of length `n`, complexity is `O(n)`.
-    ///
-    /// # Example
-    ///
-    /// ```
-    /// use rand::seq::SliceRandom;
-    /// use rand::thread_rng;
-    ///
-    /// let mut rng = thread_rng();
-    /// let mut y = [1, 2, 3, 4, 5];
-    /// println!("Unshuffled: {:?}", y);
-    /// y.shuffle(&mut rng);
-    /// println!("Shuffled:   {:?}", y);
-    /// ```
-    fn shuffle<R>(&mut self, rng: &mut R)
-    where R: Rng + ?Sized;
-
-    /// Shuffle a slice in place, but exit early.
-    ///
-    /// Returns two mutable slices from the source slice. The first contains
-    /// `amount` elements randomly permuted. The second has the remaining
-    /// elements that are not fully shuffled.
-    ///
-    /// This is an efficient method to select `amount` elements at random from
-    /// the slice, provided the slice may be mutated.
-    ///
-    /// If you only need to choose elements randomly and `amount > self.len()/2`
-    /// then you may improve performance by taking
-    /// `amount = values.len() - amount` and using only the second slice.
-    ///
-    /// If `amount` is greater than the number of elements in the slice, this
-    /// will perform a full shuffle.
-    ///
-    /// For slices, complexity is `O(m)` where `m = amount`.
-    fn partial_shuffle<R>(
-        &mut self, rng: &mut R, amount: usize,
-    ) -> (&mut [Self::Item], &mut [Self::Item])
-    where R: Rng + ?Sized;
-}
-
-/// Extension trait on iterators, providing random sampling methods.
-///
-/// This trait is implemented on all iterators `I` where `I: Iterator + Sized`
-/// and provides methods for
-/// choosing one or more elements. You must `use` this trait:
-///
-/// ```
-/// use rand::seq::IteratorRandom;
-///
-/// let mut rng = rand::thread_rng();
-///
-/// let faces = "😀😎😐😕😠😢";
-/// println!("I am {}!", faces.chars().choose(&mut rng).unwrap());
-/// ```
-/// Example output (non-deterministic):
-/// ```none
-/// I am 😀!
-/// ```
-pub trait IteratorRandom: Iterator + Sized {
-    /// Choose one element at random from the iterator.
-    ///
-    /// Returns `None` if and only if the iterator is empty.
-    ///
-    /// This method uses [`Iterator::size_hint`] for optimisation. With an
-    /// accurate hint and where [`Iterator::nth`] is a constant-time operation
-    /// this method can offer `O(1)` performance. Where no size hint is
-    /// available, complexity is `O(n)` where `n` is the iterator length.
-    /// Partial hints (where `lower > 0`) also improve performance.
-    ///
-    /// Note that the output values and the number of RNG samples used
-    /// depends on size hints. In particular, `Iterator` combinators that don't
-    /// change the values yielded but change the size hints may result in
-    /// `choose` returning different elements. If you want consistent results
-    /// and RNG usage consider using [`IteratorRandom::choose_stable`].
-    fn choose<R>(mut self, rng: &mut R) -> Option<Self::Item>
-    where R: Rng + ?Sized {
-        let (mut lower, mut upper) = self.size_hint();
-        let mut consumed = 0;
-        let mut result = None;
-
-        // Handling for this condition outside the loop allows the optimizer to eliminate the loop
-        // when the Iterator is an ExactSizeIterator. This has a large performance impact on e.g.
-        // seq_iter_choose_from_1000.
-        if upper == Some(lower) {
-            return if lower == 0 {
-                None
-            } else {
-                self.nth(gen_index(rng, lower))
-            };
-        }
-
-        // Continue until the iterator is exhausted
-        loop {
-            if lower > 1 {
-                let ix = gen_index(rng, lower + consumed);
-                let skip = if ix < lower {
-                    result = self.nth(ix);
-                    lower - (ix + 1)
-                } else {
-                    lower
-                };
-                if upper == Some(lower) {
-                    return result;
-                }
-                consumed += lower;
-                if skip > 0 {
-                    self.nth(skip - 1);
-                }
-            } else {
-                let elem = self.next();
-                if elem.is_none() {
-                    return result;
-                }
-                consumed += 1;
-                if gen_index(rng, consumed) == 0 {
-                    result = elem;
-                }
-            }
-
-            let hint = self.size_hint();
-            lower = hint.0;
-            upper = hint.1;
-        }
-    }
-
-    /// Choose one element at random from the iterator.
-    ///
-    /// Returns `None` if and only if the iterator is empty.
-    ///
-    /// This method is very similar to [`choose`] except that the result
-    /// only depends on the length of the iterator and the values produced by
-    /// `rng`. Notably for any iterator of a given length this will make the
-    /// same requests to `rng` and if the same sequence of values are produced
-    /// the same index will be selected from `self`. This may be useful if you
-    /// need consistent results no matter what type of iterator you are working
-    /// with. If you do not need this stability prefer [`choose`].
-    ///
-    /// Note that this method still uses [`Iterator::size_hint`] to skip
-    /// constructing elements where possible, however the selection and `rng`
-    /// calls are the same in the face of this optimization. If you want to
-    /// force every element to be created regardless call `.inspect(|e| ())`.
-    ///
-    /// [`choose`]: IteratorRandom::choose
-    fn choose_stable<R>(mut self, rng: &mut R) -> Option<Self::Item>
-    where R: Rng + ?Sized {
-        let mut consumed = 0;
-        let mut result = None;
-
-        loop {
-            // Currently the only way to skip elements is `nth()`. So we need to
-            // store what index to access next here.
-            // This should be replaced by `advance_by()` once it is stable:
-            // https://github.com/rust-lang/rust/issues/77404
-            let mut next = 0;
-
-            let (lower, _) = self.size_hint();
-            if lower >= 2 {
-                let highest_selected = (0..lower)
-                    .filter(|ix| gen_index(rng, consumed+ix+1) == 0)
-                    .last();
-
-                consumed += lower;
-                next = lower;
-
-                if let Some(ix) = highest_selected {
-                    result = self.nth(ix);
-                    next -= ix + 1;
-                    debug_assert!(result.is_some(), "iterator shorter than size_hint().0");
-                }
-            }
-
-            let elem = self.nth(next);
-            if elem.is_none() {
-                return result
-            }
-
-            if gen_index(rng, consumed+1) == 0 {
-                result = elem;
-            }
-            consumed += 1;
-        }
-    }
-
-    /// Collects values at random from the iterator into a supplied buffer
-    /// until that buffer is filled.
-    ///
-    /// Although the elements are selected randomly, the order of elements in
-    /// the buffer is neither stable nor fully random. If random ordering is
-    /// desired, shuffle the result.
-    ///
-    /// Returns the number of elements added to the buffer. This equals the length
-    /// of the buffer unless the iterator contains insufficient elements, in which
-    /// case this equals the number of elements available.
-    ///
-    /// Complexity is `O(n)` where `n` is the length of the iterator.
-    /// For slices, prefer [`SliceRandom::choose_multiple`].
-    fn choose_multiple_fill<R>(mut self, rng: &mut R, buf: &mut [Self::Item]) -> usize
-    where R: Rng + ?Sized {
-        let amount = buf.len();
-        let mut len = 0;
-        while len < amount {
-            if let Some(elem) = self.next() {
-                buf[len] = elem;
-                len += 1;
-            } else {
-                // Iterator exhausted; stop early
-                return len;
-            }
-        }
-
-        // Continue, since the iterator was not exhausted
-        for (i, elem) in self.enumerate() {
-            let k = gen_index(rng, i + 1 + amount);
-            if let Some(slot) = buf.get_mut(k) {
-                *slot = elem;
-            }
-        }
-        len
-    }
-
-    /// Collects `amount` values at random from the iterator into a vector.
-    ///
-    /// This is equivalent to `choose_multiple_fill` except for the result type.
-    ///
-    /// Although the elements are selected randomly, the order of elements in
-    /// the buffer is neither stable nor fully random. If random ordering is
-    /// desired, shuffle the result.
-    ///
-    /// The length of the returned vector equals `amount` unless the iterator
-    /// contains insufficient elements, in which case it equals the number of
-    /// elements available.
-    ///
-    /// Complexity is `O(n)` where `n` is the length of the iterator.
-    /// For slices, prefer [`SliceRandom::choose_multiple`].
-    #[cfg(feature = "alloc")]
-    #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-    fn choose_multiple<R>(mut self, rng: &mut R, amount: usize) -> Vec<Self::Item>
-    where R: Rng + ?Sized {
-        let mut reservoir = Vec::with_capacity(amount);
-        reservoir.extend(self.by_ref().take(amount));
-
-        // Continue unless the iterator was exhausted
-        //
-        // note: this prevents iterators that "restart" from causing problems.
-        // If the iterator stops once, then so do we.
-        if reservoir.len() == amount {
-            for (i, elem) in self.enumerate() {
-                let k = gen_index(rng, i + 1 + amount);
-                if let Some(slot) = reservoir.get_mut(k) {
-                    *slot = elem;
-                }
-            }
-        } else {
-            // Don't hang onto extra memory. There is a corner case where
-            // `amount` was much less than `self.len()`.
-            reservoir.shrink_to_fit();
-        }
-        reservoir
-    }
-}
-
-
-impl<T> SliceRandom for [T] {
-    type Item = T;
-
-    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Item>
-    where R: Rng + ?Sized {
-        if self.is_empty() {
-            None
-        } else {
-            Some(&self[gen_index(rng, self.len())])
-        }
-    }
-
-    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Item>
-    where R: Rng + ?Sized {
-        if self.is_empty() {
-            None
-        } else {
-            let len = self.len();
-            Some(&mut self[gen_index(rng, len)])
-        }
-    }
-
-    #[cfg(feature = "alloc")]
-    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Item>
-    where R: Rng + ?Sized {
-        let amount = ::core::cmp::min(amount, self.len());
-        SliceChooseIter {
-            slice: self,
-            _phantom: Default::default(),
-            indices: index::sample(rng, self.len(), amount).into_iter(),
-        }
-    }
-
-    #[cfg(feature = "alloc")]
-    fn choose_weighted<R, F, B, X>(
-        &self, rng: &mut R, weight: F,
-    ) -> Result<&Self::Item, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> B,
-        B: SampleBorrow<X>,
-        X: SampleUniform
-            + for<'a> ::core::ops::AddAssign<&'a X>
-            + ::core::cmp::PartialOrd<X>
-            + Clone
-            + Default,
-    {
-        use crate::distributions::{Distribution, WeightedIndex};
-        let distr = WeightedIndex::new(self.iter().map(weight))?;
-        Ok(&self[distr.sample(rng)])
-    }
-
-    #[cfg(feature = "alloc")]
-    fn choose_weighted_mut<R, F, B, X>(
-        &mut self, rng: &mut R, weight: F,
-    ) -> Result<&mut Self::Item, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> B,
-        B: SampleBorrow<X>,
-        X: SampleUniform
-            + for<'a> ::core::ops::AddAssign<&'a X>
-            + ::core::cmp::PartialOrd<X>
-            + Clone
-            + Default,
-    {
-        use crate::distributions::{Distribution, WeightedIndex};
-        let distr = WeightedIndex::new(self.iter().map(weight))?;
-        Ok(&mut self[distr.sample(rng)])
-    }
-
-    #[cfg(feature = "std")]
-    fn choose_multiple_weighted<R, F, X>(
-        &self, rng: &mut R, amount: usize, weight: F,
-    ) -> Result<SliceChooseIter<Self, Self::Item>, WeightedError>
-    where
-        R: Rng + ?Sized,
-        F: Fn(&Self::Item) -> X,
-        X: Into<f64>,
-    {
-        let amount = ::core::cmp::min(amount, self.len());
-        Ok(SliceChooseIter {
-            slice: self,
-            _phantom: Default::default(),
-            indices: index::sample_weighted(
-                rng,
-                self.len(),
-                |idx| weight(&self[idx]).into(),
-                amount,
-            )?
-            .into_iter(),
-        })
-    }
-
-    fn shuffle<R>(&mut self, rng: &mut R)
-    where R: Rng + ?Sized {
-        for i in (1..self.len()).rev() {
-            // invariant: elements with index > i have been locked in place.
-            self.swap(i, gen_index(rng, i + 1));
-        }
-    }
-
-    fn partial_shuffle<R>(
-        &mut self, rng: &mut R, amount: usize,
-    ) -> (&mut [Self::Item], &mut [Self::Item])
-    where R: Rng + ?Sized {
-        // This applies Durstenfeld's algorithm for the
-        // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
-        // for an unbiased permutation, but exits early after choosing `amount`
-        // elements.
-
-        let len = self.len();
-        let end = if amount >= len { 0 } else { len - amount };
-
-        for i in (end..len).rev() {
-            // invariant: elements with index > i have been locked in place.
-            self.swap(i, gen_index(rng, i + 1));
-        }
-        let r = self.split_at_mut(end);
-        (r.1, r.0)
-    }
-}
-
-impl<I> IteratorRandom for I where I: Iterator + Sized {}
-
-
-/// An iterator over multiple slice elements.
-///
-/// This struct is created by
-/// [`SliceRandom::choose_multiple`](trait.SliceRandom.html#tymethod.choose_multiple).
-#[cfg(feature = "alloc")]
-#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
-#[derive(Debug)]
-pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
-    slice: &'a S,
-    _phantom: ::core::marker::PhantomData<T>,
-    indices: index::IndexVecIntoIter,
-}
-
-#[cfg(feature = "alloc")]
-impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
-    type Item = &'a T;
-
-    fn next(&mut self) -> Option<Self::Item> {
-        // TODO: investigate using SliceIndex::get_unchecked when stable
-        self.indices.next().map(|i| &self.slice[i as usize])
-    }
-
-    fn size_hint(&self) -> (usize, Option<usize>) {
-        (self.indices.len(), Some(self.indices.len()))
-    }
-}
-
-#[cfg(feature = "alloc")]
-impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
-    for SliceChooseIter<'a, S, T>
-{
-    fn len(&self) -> usize {
-        self.indices.len()
-    }
-}
-
-
-// Sample a number uniformly between 0 and `ubound`. Uses 32-bit sampling where
-// possible, primarily in order to produce the same output on 32-bit and 64-bit
-// platforms.
-#[inline]
-fn gen_index<R: Rng + ?Sized>(rng: &mut R, ubound: usize) -> usize {
-    if ubound <= (core::u32::MAX as usize) {
-        rng.gen_range(0..ubound as u32) as usize
-    } else {
-        rng.gen_range(0..ubound)
-    }
-}
-
-
-#[cfg(test)]
-mod test {
-    use super::*;
-    #[cfg(feature = "alloc")] use crate::Rng;
-    #[cfg(all(feature = "alloc", not(feature = "std")))] use alloc::vec::Vec;
-
-    #[test]
-    fn test_slice_choose() {
-        let mut r = crate::test::rng(107);
-        let chars = [
-            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
-        ];
-        let mut chosen = [0i32; 14];
-        // The below all use a binomial distribution with n=1000, p=1/14.
-        // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
-        for _ in 0..1000 {
-            let picked = *chars.choose(&mut r).unwrap();
-            chosen[(picked as usize) - ('a' as usize)] += 1;
-        }
-        for count in chosen.iter() {
-            assert!(40 < *count && *count < 106);
-        }
-
-        chosen.iter_mut().for_each(|x| *x = 0);
-        for _ in 0..1000 {
-            *chosen.choose_mut(&mut r).unwrap() += 1;
-        }
-        for count in chosen.iter() {
-            assert!(40 < *count && *count < 106);
-        }
-
-        let mut v: [isize; 0] = [];
-        assert_eq!(v.choose(&mut r), None);
-        assert_eq!(v.choose_mut(&mut r), None);
-    }
-
-    #[test]
-    fn value_stability_slice() {
-        let mut r = crate::test::rng(413);
-        let chars = [
-            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
-        ];
-        let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
-
-        assert_eq!(chars.choose(&mut r), Some(&'l'));
-        assert_eq!(nums.choose_mut(&mut r), Some(&mut 10));
-
-        #[cfg(feature = "alloc")]
-        assert_eq!(
-            &chars
-                .choose_multiple(&mut r, 8)
-                .cloned()
-                .collect::<Vec<char>>(),
-            &['d', 'm', 'b', 'n', 'c', 'k', 'h', 'e']
-        );
-
-        #[cfg(feature = "alloc")]
-        assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'f'));
-        #[cfg(feature = "alloc")]
-        assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 5));
-
-        let mut r = crate::test::rng(414);
-        nums.shuffle(&mut r);
-        assert_eq!(nums, [9, 5, 3, 10, 7, 12, 8, 11, 6, 4, 0, 2, 1]);
-        nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
-        let res = nums.partial_shuffle(&mut r, 6);
-        assert_eq!(res.0, &mut [7, 4, 8, 6, 9, 3]);
-        assert_eq!(res.1, &mut [0, 1, 2, 12, 11, 5, 10]);
-    }
-
-    #[derive(Clone)]
-    struct UnhintedIterator<I: Iterator + Clone> {
-        iter: I,
-    }
-    impl<I: Iterator + Clone> Iterator for UnhintedIterator<I> {
-        type Item = I::Item;
-
-        fn next(&mut self) -> Option<Self::Item> {
-            self.iter.next()
-        }
-    }
-
-    #[derive(Clone)]
-    struct ChunkHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
-        iter: I,
-        chunk_remaining: usize,
-        chunk_size: usize,
-        hint_total_size: bool,
-    }
-    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for ChunkHintedIterator<I> {
-        type Item = I::Item;
-
-        fn next(&mut self) -> Option<Self::Item> {
-            if self.chunk_remaining == 0 {
-                self.chunk_remaining = ::core::cmp::min(self.chunk_size, self.iter.len());
-            }
-            self.chunk_remaining = self.chunk_remaining.saturating_sub(1);
-
-            self.iter.next()
-        }
-
-        fn size_hint(&self) -> (usize, Option<usize>) {
-            (
-                self.chunk_remaining,
-                if self.hint_total_size {
-                    Some(self.iter.len())
-                } else {
-                    None
-                },
-            )
-        }
-    }
-
-    #[derive(Clone)]
-    struct WindowHintedIterator<I: ExactSizeIterator + Iterator + Clone> {
-        iter: I,
-        window_size: usize,
-        hint_total_size: bool,
-    }
-    impl<I: ExactSizeIterator + Iterator + Clone> Iterator for WindowHintedIterator<I> {
-        type Item = I::Item;
-
-        fn next(&mut self) -> Option<Self::Item> {
-            self.iter.next()
-        }
-
-        fn size_hint(&self) -> (usize, Option<usize>) {
-            (
-                ::core::cmp::min(self.iter.len(), self.window_size),
-                if self.hint_total_size {
-                    Some(self.iter.len())
-                } else {
-                    None
-                },
-            )
-        }
-    }
-
-    #[test]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_iterator_choose() {
-        let r = &mut crate::test::rng(109);
-        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
-            let mut chosen = [0i32; 9];
-            for _ in 0..1000 {
-                let picked = iter.clone().choose(r).unwrap();
-                chosen[picked] += 1;
-            }
-            for count in chosen.iter() {
-                // Samples should follow Binomial(1000, 1/9)
-                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
-                // Note: have seen 153, which is unlikely but not impossible.
-                assert!(
-                    72 < *count && *count < 154,
-                    "count not close to 1000/9: {}",
-                    count
-                );
-            }
-        }
-
-        test_iter(r, 0..9);
-        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
-        #[cfg(feature = "alloc")]
-        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
-        test_iter(r, UnhintedIterator { iter: 0..9 });
-        test_iter(r, ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: false,
-        });
-        test_iter(r, ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: true,
-        });
-        test_iter(r, WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: false,
-        });
-        test_iter(r, WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: true,
-        });
-
-        assert_eq!((0..0).choose(r), None);
-        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
-    }
-
-    #[test]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_iterator_choose_stable() {
-        let r = &mut crate::test::rng(109);
-        fn test_iter<R: Rng + ?Sized, Iter: Iterator<Item = usize> + Clone>(r: &mut R, iter: Iter) {
-            let mut chosen = [0i32; 9];
-            for _ in 0..1000 {
-                let picked = iter.clone().choose_stable(r).unwrap();
-                chosen[picked] += 1;
-            }
-            for count in chosen.iter() {
-                // Samples should follow Binomial(1000, 1/9)
-                // Octave: binopdf(x, 1000, 1/9) gives the prob of *count == x
-                // Note: have seen 153, which is unlikely but not impossible.
-                assert!(
-                    72 < *count && *count < 154,
-                    "count not close to 1000/9: {}",
-                    count
-                );
-            }
-        }
-
-        test_iter(r, 0..9);
-        test_iter(r, [0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned());
-        #[cfg(feature = "alloc")]
-        test_iter(r, (0..9).collect::<Vec<_>>().into_iter());
-        test_iter(r, UnhintedIterator { iter: 0..9 });
-        test_iter(r, ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: false,
-        });
-        test_iter(r, ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: true,
-        });
-        test_iter(r, WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: false,
-        });
-        test_iter(r, WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: true,
-        });
-
-        assert_eq!((0..0).choose(r), None);
-        assert_eq!(UnhintedIterator { iter: 0..0 }.choose(r), None);
-    }
-
-    #[test]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_iterator_choose_stable_stability() {
-        fn test_iter(iter: impl Iterator<Item = usize> + Clone) -> [i32; 9] {
-            let r = &mut crate::test::rng(109);
-            let mut chosen = [0i32; 9];
-            for _ in 0..1000 {
-                let picked = iter.clone().choose_stable(r).unwrap();
-                chosen[picked] += 1;
-            }
-            chosen
-        }
-
-        let reference = test_iter(0..9);
-        assert_eq!(test_iter([0, 1, 2, 3, 4, 5, 6, 7, 8].iter().cloned()), reference);
-
-        #[cfg(feature = "alloc")]
-        assert_eq!(test_iter((0..9).collect::<Vec<_>>().into_iter()), reference);
-        assert_eq!(test_iter(UnhintedIterator { iter: 0..9 }), reference);
-        assert_eq!(test_iter(ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: false,
-        }), reference);
-        assert_eq!(test_iter(ChunkHintedIterator {
-            iter: 0..9,
-            chunk_size: 4,
-            chunk_remaining: 4,
-            hint_total_size: true,
-        }), reference);
-        assert_eq!(test_iter(WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: false,
-        }), reference);
-        assert_eq!(test_iter(WindowHintedIterator {
-            iter: 0..9,
-            window_size: 2,
-            hint_total_size: true,
-        }), reference);
-    }
-
-    #[test]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_shuffle() {
-        let mut r = crate::test::rng(108);
-        let empty: &mut [isize] = &mut [];
-        empty.shuffle(&mut r);
-        let mut one = [1];
-        one.shuffle(&mut r);
-        let b: &[_] = &[1];
-        assert_eq!(one, b);
-
-        let mut two = [1, 2];
-        two.shuffle(&mut r);
-        assert!(two == [1, 2] || two == [2, 1]);
-
-        fn move_last(slice: &mut [usize], pos: usize) {
-            // use slice[pos..].rotate_left(1); once we can use that
-            let last_val = slice[pos];
-            for i in pos..slice.len() - 1 {
-                slice[i] = slice[i + 1];
-            }
-            *slice.last_mut().unwrap() = last_val;
-        }
-        let mut counts = [0i32; 24];
-        for _ in 0..10000 {
-            let mut arr: [usize; 4] = [0, 1, 2, 3];
-            arr.shuffle(&mut r);
-            let mut permutation = 0usize;
-            let mut pos_value = counts.len();
-            for i in 0..4 {
-                pos_value /= 4 - i;
-                let pos = arr.iter().position(|&x| x == i).unwrap();
-                assert!(pos < (4 - i));
-                permutation += pos * pos_value;
-                move_last(&mut arr, pos);
-                assert_eq!(arr[3], i);
-            }
-            for (i, &a) in arr.iter().enumerate() {
-                assert_eq!(a, i);
-            }
-            counts[permutation] += 1;
-        }
-        for count in counts.iter() {
-            // Binomial(10000, 1/24) with average 416.667
-            // Octave: binocdf(n, 10000, 1/24)
-            // 99.9% chance samples lie within this range:
-            assert!(352 <= *count && *count <= 483, "count: {}", count);
-        }
-    }
-
-    #[test]
-    fn test_partial_shuffle() {
-        let mut r = crate::test::rng(118);
-
-        let mut empty: [u32; 0] = [];
-        let res = empty.partial_shuffle(&mut r, 10);
-        assert_eq!((res.0.len(), res.1.len()), (0, 0));
-
-        let mut v = [1, 2, 3, 4, 5];
-        let res = v.partial_shuffle(&mut r, 2);
-        assert_eq!((res.0.len(), res.1.len()), (2, 3));
-        assert!(res.0[0] != res.0[1]);
-        // First elements are only modified if selected, so at least one isn't modified:
-        assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
-    }
-
-    #[test]
-    #[cfg(feature = "alloc")]
-    fn test_sample_iter() {
-        let min_val = 1;
-        let max_val = 100;
-
-        let mut r = crate::test::rng(401);
-        let vals = (min_val..max_val).collect::<Vec<i32>>();
-        let small_sample = vals.iter().choose_multiple(&mut r, 5);
-        let large_sample = vals.iter().choose_multiple(&mut r, vals.len() + 5);
-
-        assert_eq!(small_sample.len(), 5);
-        assert_eq!(large_sample.len(), vals.len());
-        // no randomization happens when amount >= len
-        assert_eq!(large_sample, vals.iter().collect::<Vec<_>>());
-
-        assert!(small_sample
-            .iter()
-            .all(|e| { **e >= min_val && **e <= max_val }));
-    }
-
-    #[test]
-    #[cfg(feature = "alloc")]
-    #[cfg_attr(miri, ignore)] // Miri is too slow
-    fn test_weighted() {
-        let mut r = crate::test::rng(406);
-        const N_REPS: u32 = 3000;
-        let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
-        let total_weight = weights.iter().sum::<u32>() as f32;
-
-        let verify = |result: [i32; 14]| {
-            for (i, count) in result.iter().enumerate() {
-                let exp = (weights[i] * N_REPS) as f32 / total_weight;
-                let mut err = (*count as f32 - exp).abs();
-                if err != 0.0 {
-                    err /= exp;
-                }
-                assert!(err <= 0.25);
-            }
-        };
-
-        // choose_weighted
-        fn get_weight<T>(item: &(u32, T)) -> u32 {
-            item.0
-        }
-        let mut chosen = [0i32; 14];
-        let mut items = [(0u32, 0usize); 14]; // (weight, index)
-        for (i, item) in items.iter_mut().enumerate() {
-            *item = (weights[i], i);
-        }
-        for _ in 0..N_REPS {
-            let item = items.choose_weighted(&mut r, get_weight).unwrap();
-            chosen[item.1] += 1;
-        }
-        verify(chosen);
-
-        // choose_weighted_mut
-        let mut items = [(0u32, 0i32); 14]; // (weight, count)
-        for (i, item) in items.iter_mut().enumerate() {
-            *item = (weights[i], 0);
-        }
-        for _ in 0..N_REPS {
-            items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
-        }
-        for (ch, item) in chosen.iter_mut().zip(items.iter()) {
-            *ch = item.1;
-        }
-        verify(chosen);
-
-        // Check error cases
-        let empty_slice = &mut [10][0..0];
-        assert_eq!(
-            empty_slice.choose_weighted(&mut r, |_| 1),
-            Err(WeightedError::NoItem)
-        );
-        assert_eq!(
-            empty_slice.choose_weighted_mut(&mut r, |_| 1),
-            Err(WeightedError::NoItem)
-        );
-        assert_eq!(
-            ['x'].choose_weighted_mut(&mut r, |_| 0),
-            Err(WeightedError::AllWeightsZero)
-        );
-        assert_eq!(
-            [0, -1].choose_weighted_mut(&mut r, |x| *x),
-            Err(WeightedError::InvalidWeight)
-        );
-        assert_eq!(
-            [-1, 0].choose_weighted_mut(&mut r, |x| *x),
-            Err(WeightedError::InvalidWeight)
-        );
-    }
-
-    #[test]
-    fn value_stability_choose() {
-        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
-            let mut rng = crate::test::rng(411);
-            iter.choose(&mut rng)
-        }
-
-        assert_eq!(choose([].iter().cloned()), None);
-        assert_eq!(choose(0..100), Some(33));
-        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
-        assert_eq!(
-            choose(ChunkHintedIterator {
-                iter: 0..100,
-                chunk_size: 32,
-                chunk_remaining: 32,
-                hint_total_size: false,
-            }),
-            Some(39)
-        );
-        assert_eq!(
-            choose(ChunkHintedIterator {
-                iter: 0..100,
-                chunk_size: 32,
-                chunk_remaining: 32,
-                hint_total_size: true,
-            }),
-            Some(39)
-        );
-        assert_eq!(
-            choose(WindowHintedIterator {
-                iter: 0..100,
-                window_size: 32,
-                hint_total_size: false,
-            }),
-            Some(90)
-        );
-        assert_eq!(
-            choose(WindowHintedIterator {
-                iter: 0..100,
-                window_size: 32,
-                hint_total_size: true,
-            }),
-            Some(90)
-        );
-    }
-
-    #[test]
-    fn value_stability_choose_stable() {
-        fn choose<I: Iterator<Item = u32>>(iter: I) -> Option<u32> {
-            let mut rng = crate::test::rng(411);
-            iter.choose_stable(&mut rng)
-        }
-
-        assert_eq!(choose([].iter().cloned()), None);
-        assert_eq!(choose(0..100), Some(40));
-        assert_eq!(choose(UnhintedIterator { iter: 0..100 }), Some(40));
-        assert_eq!(
-            choose(ChunkHintedIterator {
-                iter: 0..100,
-                chunk_size: 32,
-                chunk_remaining: 32,
-                hint_total_size: false,
-            }),
-            Some(40)
-        );
-        assert_eq!(
-            choose(ChunkHintedIterator {
-                iter: 0..100,
-                chunk_size: 32,
-                chunk_remaining: 32,
-                hint_total_size: true,
-            }),
-            Some(40)
-        );
-        assert_eq!(
-            choose(WindowHintedIterator {
-                iter: 0..100,
-                window_size: 32,
-                hint_total_size: false,
-            }),
-            Some(40)
-        );
-        assert_eq!(
-            choose(WindowHintedIterator {
-                iter: 0..100,
-                window_size: 32,
-                hint_total_size: true,
-            }),
-            Some(40)
-        );
-    }
-
-    #[test]
-    fn value_stability_choose_multiple() {
-        fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
-            let mut rng = crate::test::rng(412);
-            let mut buf = [0u32; 8];
-            assert_eq!(iter.choose_multiple_fill(&mut rng, &mut buf), v.len());
-            assert_eq!(&buf[0..v.len()], v);
-        }
-
-        do_test(0..4, &[0, 1, 2, 3]);
-        do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
-        do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
-
-        #[cfg(feature = "alloc")]
-        {
-            fn do_test<I: Iterator<Item = u32>>(iter: I, v: &[u32]) {
-                let mut rng = crate::test::rng(412);
-                assert_eq!(iter.choose_multiple(&mut rng, v.len()), v);
-            }
-
-            do_test(0..4, &[0, 1, 2, 3]);
-            do_test(0..8, &[0, 1, 2, 3, 4, 5, 6, 7]);
-            do_test(0..100, &[58, 78, 80, 92, 43, 8, 96, 7]);
-        }
-    }
-
-    #[test]
-    #[cfg(feature = "std")]
-    fn test_multiple_weighted_edge_cases() {
-        use super::*;
-
-        let mut rng = crate::test::rng(413);
-
-        // Case 1: One of the weights is 0
-        let choices = [('a', 2), ('b', 1), ('c', 0)];
-        for _ in 0..100 {
-            let result = choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap()
-                .collect::<Vec<_>>();
-
-            assert_eq!(result.len(), 2);
-            assert!(!result.iter().any(|val| val.0 == 'c'));
-        }
-
-        // Case 2: All of the weights are 0
-        let choices = [('a', 0), ('b', 0), ('c', 0)];
-
-        assert_eq!(choices
-            .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-            .unwrap().count(), 2);
-
-        // Case 3: Negative weights
-        let choices = [('a', -1), ('b', 1), ('c', 1)];
-        assert_eq!(
-            choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap_err(),
-            WeightedError::InvalidWeight
-        );
-
-        // Case 4: Empty list
-        let choices = [];
-        assert_eq!(choices
-            .choose_multiple_weighted(&mut rng, 0, |_: &()| 0)
-            .unwrap().count(), 0);
-
-        // Case 5: NaN weights
-        let choices = [('a', core::f64::NAN), ('b', 1.0), ('c', 1.0)];
-        assert_eq!(
-            choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap_err(),
-            WeightedError::InvalidWeight
-        );
-
-        // Case 6: +infinity weights
-        let choices = [('a', core::f64::INFINITY), ('b', 1.0), ('c', 1.0)];
-        for _ in 0..100 {
-            let result = choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap()
-                .collect::<Vec<_>>();
-            assert_eq!(result.len(), 2);
-            assert!(result.iter().any(|val| val.0 == 'a'));
-        }
-
-        // Case 7: -infinity weights
-        let choices = [('a', core::f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
-        assert_eq!(
-            choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap_err(),
-            WeightedError::InvalidWeight
-        );
-
-        // Case 8: -0 weights
-        let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
-        assert!(choices
-            .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-            .is_ok());
-    }
-
-    #[test]
-    #[cfg(feature = "std")]
-    fn test_multiple_weighted_distributions() {
-        use super::*;
-
-        // The theoretical probabilities of the different outcomes are:
-        // AB: 0.5  * 0.5  = 0.250
-        // AC: 0.5  * 0.5  = 0.250
-        // BA: 0.25 * 0.67 = 0.167
-        // BC: 0.25 * 0.33 = 0.082
-        // CA: 0.25 * 0.67 = 0.167
-        // CB: 0.25 * 0.33 = 0.082
-        let choices = [('a', 2), ('b', 1), ('c', 1)];
-        let mut rng = crate::test::rng(414);
-
-        let mut results = [0i32; 3];
-        let expected_results = [4167, 4167, 1666];
-        for _ in 0..10000 {
-            let result = choices
-                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
-                .unwrap()
-                .collect::<Vec<_>>();
-
-            assert_eq!(result.len(), 2);
-
-            match (result[0].0, result[1].0) {
-                ('a', 'b') | ('b', 'a') => {
-                    results[0] += 1;
-                }
-                ('a', 'c') | ('c', 'a') => {
-                    results[1] += 1;
-                }
-                ('b', 'c') | ('c', 'b') => {
-                    results[2] += 1;
-                }
-                (_, _) => panic!("unexpected result"),
-            }
-        }
-
-        let mut diffs = results
-            .iter()
-            .zip(&expected_results)
-            .map(|(a, b)| (a - b).abs());
-        assert!(!diffs.any(|deviation| deviation > 100));
-    }
-}
-
-
\ No newline at end of file -- cgit v1.2.3-70-g09d2